Transfer Neural Trees for Heterogeneous Domain Adaptation
نویسندگان
چکیده
Heterogeneous domain adaptation (HDA) addresses the task of associating data not only across dissimilar domains but also described by different types of features. Inspired by the recent advances of neural networks and deep learning, we propose Transfer Neural Trees (TNT) which jointly solves cross-domain feature mapping, adaptation, and classification in a NN-based architecture. As the prediction layer in TNT, we further propose Transfer Neural Decision Forest (Transfer-NDF), which effectively adapts the neurons in TNT for adaptation by stochastic pruning. Moreover, to address semi-supervised HDA, a unique embedding loss term for preserving prediction and structural consistency between targetdomain data is introduced into TNT. Experiments on classification tasks across features, datasets, and modalities successfully verify the effectiveness of our TNT.
منابع مشابه
Bridging Heterogeneous Domains With Parallel Transport For Vision and Multimedia Applications
Accounting for different feature types across datasets is a relatively under-studied problem in domain adaptation. We address this heterogeneous adaptation setting using principles from parallel transport and hierarchical sparse coding. By learning generative subspaces from each domain, we first perform label-independent crossdomain feature mapping using parallel transport, and obtain a collect...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملMulti-task Domain Adaptation for Sequence Tagging
Many domain adaptation approaches rely on learning cross domain shared representations to transfer the knowledge learned in one domain to other domains. Traditional domain adaptation only considers adapting for one task. In this paper, we explore multi-task representation learning under the domain adaptation scenario. We propose a neural network framework that supports domain adaptation for mul...
متن کامل